Search
Close this search box.

An Integrated Look at Barrier Islands: Assateague to Metompkin

An Integrated Look at Barrier Islands: Assateague to Metompkin

wild horses
The famous wild horses of Assateague Island National Seashore. Photo credit: judithsweet via Flickr

Assateague back-barrier marshes
Looking east from back-barrier marshes on Assateague Island reveal common land-cover types including marsh and wetland environments (foreground), shrub/scrub and forested extents, and sand dunes (background). Photo credit: Julie Bernier.

[Source: USGS] A new Landsat-based report from the USGS St. Petersburg Coastal and Marine Science Center takes an integrated look at barrier islands.
 


Abstract
The U.S. Geological Survey has a long history of responding to and documenting the impacts of storms along the Nation’s coasts and incorporating these data into storm impact and coastal change vulnerability assessments. These studies, however, have traditionally focused on sandy shorelines and sandy barrier-island systems, without consideration of impacts to coastal wetlands. The goal of the Barrier Island and Estuarine Wetland Physical Change Assessment project is to integrate a wetland-change assessment with existing coastal-change assessments for the adjacent sandy dunes and beaches, initially focusing on Assateague Island along the Maryland and Virginia coastline. Assateague Island was impacted by waves and storm surge associated with the passage of Hurricane Sandy in October 2012, including erosion and overwash along the ocean-facing sandy shoreline as well as erosion and overwash deposition in the back-barrier and estuarine bay environments.
This report serves as an archive of data that were derived from Landsat 5 and Landsat 8 imagery from 1984 to 2014, including wetland and terrestrial habitat extents; open-ocean, back-barrier, and estuarine mainland shoreline positions; and sand-line positions along the estuarine mainland and barrier shorelines from Assateague Island, Maryland to Metompkin Island, Virginia. The geographic information system data files with accompanying formal Federal Geographic Data Committee metadata can be downloaded from the Data Downloads page.
Reference:
Bernier, J.C., Douglas, S.H., Terrano, J.F., Barras, J.A., Plant, N.G., and Smith, C.G., 2015, Land-cover types, shoreline positions, and sand extents derived from Landsat satellite imagery, Assateague Island to Metompkin Island, Maryland and Virginia, 1984 to 2014: U.S. Geological Survey Data Series 968, http://dx.doi.org/10.3133/ds968.
For additional information, contact:
St. Petersburg Coastal and Marine Science Center
U.S. Geological Survey
600 4th Street South
St. Petersburg, FL 33701
http://coastal.er.usgs.gov/

On Key

Recent Posts

Allison Nussbaum gives a Hyperwall talk about Landsat’s free-and-open data policy and how it paved the way for data products including vegetation indices and evapotranspiration.

Landsat Outreach: Denver Edition

Landsat outreach was in full swing in Denver, Colorado at Geo Week and the American Association for the Advancement of Science (AAAS) conference. The outreach team was represented by coordinator

Read More »
Landsat 2023 in Review: An image of the Landsat 9 satellite and a satellite image with the year "2023" written below it.

Landsat 2023 – A Year in Review

A delve into Landsat-based studies revealing the environmental impact of river mining, the decline in global lake water levels, and the risks of rising sea levels on coastal habitats. Plus, a sneak peek at what the future of the Landsat program holds with the introduction of Landsat Next.

Read More »
On Key

Related Posts

Allison Nussbaum gives a Hyperwall talk about Landsat’s free-and-open data policy and how it paved the way for data products including vegetation indices and evapotranspiration.

Landsat Outreach: Denver Edition

Landsat outreach was in full swing in Denver, Colorado at Geo Week and the American Association for the Advancement of Science (AAAS) conference. The outreach team was represented by coordinator

Read More »